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ABSTRACT

Segmentation and tracking of cells in fluorescence microscopy im-

age sequences is an important task in many biological studies into

cell migration as well as intracellular dynamics. The growing size

and complexity of biological image data sets precludes manual anal-

ysis, and calls for increasingly advanced automatic algorithms that

are generic enough to be easily tunable to different applications, yet

robust enough to deal with different cell types and strongly varying

imaging conditions. Active-contour based algorithms have proven

to be very suitable for this purpose but still suffer from several short-

comings that limit their segmentation accuracy and tracking robust-

ness. In addition, these algorithms are generally rather computa-

tionally expensive. In this paper, we present an advanced level-set

based multiple-cell segmentation and tracking algorithm, which im-

plements seven modifications compared to earlier algorithms that

considerably improve its performance. Preliminary experiments on

three different time-lapse fluorescence microscopy images demon-

strate the potential of the new algorithm.

Index Terms— Fluorescence microscopy, cell segmentation,

level sets, Radon transform, cell tracking.

1. INTRODUCTION

Directed cell migration is an important property of number

of cell types and one of the central processes in the develop-

ment and maintenance of a multicellular organism [1]. Anal-

ysis of cell motility and morphodynamics under normal and

perturbed conditions help to better understand complex reg-

ulatory processes within the cell as well as interactions be-

tween different cells. The ever growing size and complexity

of fluorescence microscopy image data sets poses new chal-

lenges to cell segmentation and tracking techniques. In order

to keep up with the rapid developments in the field, existing

algorithms need improvement with respect to accuracy, ro-

bustness, as well as computation time.

Various algorithms have been developed for this purpose

during the past few years [2, 3, 4, 5, 6]. In general they can be

divided into two categories [7]: algorithms performing seg-

mentation and tracking separately, and algorithms consider-

ing segmentation and tracking as one process. Recent litera-

ture shows an increasing interest in the latter category, partic-

ularly in active-contour based schemes (using snakes or level-

sets), as they offer the possibility to better exploit all avail-

able spatiotemporal information contained in the image se-

quences. However, existing algorithms show limited perfor-

mance when applied to real biological image data, which usu-

ally have a very low signal-to-noise ratio and contain many

cells that may be in close contact [2]. In addition, such al-

gorithms are relatively computationally expensive in general,

which makes them less attractive for the practical use, espe-

cially in high-throughput experiments.

In this paper we present an advanced level-set based al-

gorithm for combined segmentation and tracking of multiple

cells in fluorescence microscopy image sequences. It imple-

ments seven important modifications compared to earlier al-

gorithms [2], which considerably improve its performance in

terms of accuracy, robustness, and computation time. First,

we present a reformulation of the original framework, which

reduces the number of free parameters to be tuned. Then

we propose new approaches for algorithm initialization, ter-

mination of level-set evolution, separation of touching cells,

non-PDE based segmentation, detection and segmentation of

newly entering cells, and economical recomputation of pa-

rameters. The potential of our modified algorithm is demon-

strated by preliminary experiments on three different real flu-

orescence microscopy image sequences.

2. MULTIPLE-LEVEL-SET FRAMEWORK

In our segmentation and tracking framework, each object (cell

or nucleus) is represented by a separate level-set function, φi,

i = 1, . . . , n, where n is the number of objects. Optimal seg-

mentation of each 3D image from a sequence is obtained by

minimizing an energy functional, which contains both image-

based and smoothness-based components:

E(φ1, . . . , φn) =
n∑

i=0

∫∫∫
Ωi

− log p (I(x)|Ωi)dxdydz

+α · Length(∂Ω), (1)

where Ω0 is the background, Ωi = {x : φi(x) > 0}, i =
1, . . . , n, are the object regions such that Ω =

⋃n
i=0 Ωi is the

185978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



image domain, ∂Ω is the boundary between regions, and α
is a positive parameter. p (I(x)|Ωi) is the conditional proba-

bility that voxel x = (x, y, z) with intensity I(x) belongs to

region Ωi [8]. Unlike earlier approaches [2], we assume that

its distribution is Gaussian, which allows us to introduce the

“internal” energies of the background and objects as

ei = − log p(I|Ωi) = log σ2
i +

(I − μi)
2

σ2
i

, (2)

where μi and σi denote the mean and the variance of the in-

tensity distribution within region Ωi, i = 0, . . . , n.

The evolution equation for each level-set function is de-

rived using the variational approach. Applying to (1) the

Euler-Lagrange equation results in the following evolution

equation for the level-set functions φi, i = 1, . . . , n:

∂φi

∂t
= δε(φi)

[
α∇ · ∇φi

|∇φi| + e0 − ei

]
, (3)

where δε denotes the regularized Dirac function. The Euler-

Lagrange equations for the parameters describing the Gaus-

sian intensity distributions can be solved directly, giving

μ0 =

∫∫∫
Ω

I

n∏
j=1

(1−Hε(φj)) dxdydz

∫∫∫
Ω

n∏
j=1

(1−Hε(φj)) dxdydz

,

σ2
0 =

∫∫∫
Ω

(I − μ0)2
n∏

j=1

(1−Hε(φj)) dxdydz

∫∫∫
Ω

n∏
j=1

(1−Hε(φj)) dxdydz

,

μi =

∫∫∫
Ω

IHε(φi)dxdydz∫∫∫
Ω

Hε(φi)dxdydz

for i = 1, . . . , n, with

σ2
i =

∫∫∫
Ω

(I − μi)2Hε(φi)dxdydz∫∫∫
Ω

Hε(φi)dxdydz

, (4)

where Hε is the regularized Heaviside step function. Segmen-

tation proceeds by evolving each level-set function according

to (3), starting from its initial position. Tracking is accom-

plished by using the final level-set positions in a given image

in the sequence as initial positions for the next.

3. ALGORITHM IMPROVEMENTS

In addition to using a reformulation of the multiple-level-set

based cell tracking framework, as described above, we pro-

pose six further improvements, which make our algorithm

more accurate, robust, and efficient.

Watershed Based Initialization. The first image of a se-

quence can be segmented by using one level-set function and

splitting the function based on the number of connected com-

ponents. Since tracking depends critically on the outcome of

this step, each cell in the image must be detected precisely. To

resolve ambiguous cases of possibly lumped cells, we subse-

quently apply the watershed transform, which allows sepa-

rating closely positioned cells and automatically detects con-

nected components. Since standard watershed segmentation

tends to produce oversegmentation [3], we combine it with

region merging based on the flood-level threshold.

Sign-Change Based Stopping Criterion. The stopping cri-

terion for level-set evolution (3) is a critical factor in trad-

ing off segmentation accuracy and computational efficiency

[9]. We developed a criterion based on the number of sign

changes (indicating inclusion or exclusion) of voxels in a nar-

row band around the zero-level of the level-set function dur-

ing a number of consecutive iterations. Optimal performance

is obtained by disregarding sign changes of voxels directly

bordering the zero-level from both sides, as it is often not pos-

sible to determine with great certainty whether these voxels

belong to the cell or to the background.

Radon-Transform Based Cell Separation. Concurrent evo-

lution of multiple level-set functions entails the risk that the

surface corresponding to one of the cells captures a (part of

a) closely neighboring cell. In [2] this was accounted for by

using an energy term that penalizes overlaps. However, this

does not always result in correct location of the surfaces, since

it is not based on the image data, implying that there is no fa-

vored position for the cell boundary. Adding a volume conser-

vation constraint [2] leads to problems in handling cell divi-

sions. Instead, in our algorithm, we use the Radon transform

to perform cell separation. A similar idea has been used pre-

viously for segmenting mammospheres [10]. For each pair of

approaching cell surfaces, we calculate the Radon transform

of the intensity distribution in a window around the union of

the two cell regions, and find the local minimum in the trans-

form domain corresponding to the plane that (i) separates two

cell markers (the centers of mass), and (ii) has the smallest

cross section. Each of the two evolving level-set surfaces is

constrained to stay on one side of the plane.

Non-PDE Based Segmentation. For obtaining a good ini-

tial approximation when segmenting the first image in a se-

quence using one level-set function [2], and also for detecting

cells entering the field of view, a non-PDE based segmenta-

tion scheme [11] is used in our algorithm. However, instead of

computing (1) several iterations with α �= 0 and then several

iterations with α = 0 [2], we perform voxel swapping based

on the image-based energy only, followed by voxel swapping

based on the smoothness-based energy term only, within one

iteration. This approach does not involve the free parameter

α, thereby increasing the robustness of the scheme. In ad-

dition, it allows the use of a simpler convergence condition,

186



based on checking the number of voxels that changed sign,

thereby considerably reducing the computational cost. To fur-

ther speed up the non-PDE based scheme, we approximate the

surface area with a cut metric [12].

Segmentation of Entering Cells. An important aspect of

cell tracking is the detection of cells entering the field of

view. In our algorithm, we deal with this using the following

procedure, applied to each image in the sequence. First, we

evolve the existing level-sets without considering entering

cells. Next, we apply to the image the non-PDE based seg-

mentation scheme described above. From the result of the

latter step, we determine possible candidates, being those

connected components that are located at the image boundary

and do not intersect with any of the existing cells. Finally, for

each candidate, we create a level-set function and continue

evolution (3), starting from the current positions. Since most

cells were already correctly segmented, this process takes

relatively little time to converge.

Economical Recomputation of Parameters. Minimization

of (1) according to (3) suggests that the parameters (4) should

be recalculated after every iteration, which is computation-

ally costly. A possible solution to this problem is to assume

that these parameters do not change significantly between two

consecutive images in a sequence, and to keep them fixed per

image. However, this assumption is not always valid, espe-

cially in the case of cell division, where the mean and vari-

ance of the intensity distribution in a cell may change drasti-

cally from one image to the next. Therefore, we suggest an

intermediate solution, by updating the parameters not every

iteration, but after a number of iterations.

4. EXPERIMENTAL RESULTS

The performance of the described algorithm was tested on

three real 3D microscopy image sequences, with increasing

level of difficulty for segmentation and tracking. All images

were acquired with a laser-scanning confocal microscope

(Zeiss LSM-510) using an oil-immersion objective (Plan-

Apochromat 63×/1.4) and a matrix of 512×512 pixels per

focal plane (pixel size 190×190nm2), with 6 focal planes

(5μm apart) per image, but different numbers of time frames,

and different types of fluorescent labeling.

The first sequence (see Fig. 1), consisting of 85 time

frames (≈ 9 min. between images), shows the nuclei of HeLa

cells, visualized using histone-based green fluorescent pro-

tein (H2B-GFP) labeling, which is characterized by more or

less homogeneous fluorescence. Here, the main difficulty is

the dramatic change in shape that occurs during cell division,

and the fact that the daughter cells often move a considerable

distance from the mother cell, violating the preconditions of

earlier algorithms [2]. Nevertheless, our algorithm was able

to correctly keep track of all nuclei.

The second sequence (see Fig. 2), consisting of 50 time

frames (≈ 17 min. between images), shows the nuclei of

HeLa cells in which Rad18 proteins (involved in DNA re-

pair) are labeled with yellow fluorescent proteins (YFP). In

addition to the problem of cell division, in this case the flu-

orescence is much less homogeneous, forming clusters of

very high intensity values, while other regions may have very

low intensities, close to the background level. Also, during

division, the mean intensity within a nucleus may drop quite

strongly. Despite these difficulties, our algorithm correctly

segmented and tracked all cells correctly.

Finally, as a third sequence (see Fig. 3), we used the red

channel of the same data set as the second sequence, which

shows mCherry-labeled PCNA particles (involved in DNA re-

pair and replication). In this case, not only the nuclei, but

sometimes also whole cells are visible, which may be in di-

rect contact. As can be observed from the data, the boundaries

between these cells are practically linear, and in all cases our

algorithm was able to find the correct separating surface.

5. DISCUSSION

In this paper we have discussed a number of shortcomings of

existing level-set based algorithms for multiple-cell segmen-

tation and tracking in fluorescence microscopy, that have a

negative effect on the segmentation quality, tracking robust-

ness, as well as time consumption, and we have proposed ef-

fective and efficient solutions for each of them. The results

of preliminary experiments on real 3D image sequences ac-

quired for different biological studies show that the improved

algorithm correctly segments and tracks cells and nuclei of

widely varying appearance caused by different fluorescent la-

belings. In addition, it robustly deals with cases of dividing

and touching cells, where previous algorithms failed. We are

currently undertaking a thorough validation of the algorithm

in the context of several biological studies requiring careful

cell motion registration to allow the analysis of intracellular

patterns and dynamics.
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Fig. 2. Sample results of nuclei tracking in the YFP channel of images obtained using the Rad18 staining. One slice of the 3D image is

shown for time steps 24, 29, 33 and 44.

Fig. 3. Sample results of nuclei tracking in the mCherry channel of images obtained using the PCNA staining. One slice of the 3D image is

shown for time steps 1, 12, 37 and 50.
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